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Abstract l-

Robot coordination and control systems for remote
teleoperation applications are by necessity implemented
on distributed computers. Modeling and performance
analysis of these distributed robotic systems is difficult,
but important for economic system design. Perfor-
mance analysis methods originally developed for con-
ventional distributed computer systems are often unsat-

isfactory for evaluating real-time systems. The paper
introduces a formal model of distributed robotic control

systems; and a performance analysis method, based on
scheduling theory, which can handle concurrent hard-
real-time response specifications. Use of the method is
illustrated by a case study of remote teleoperation which
assesses the effect of communication delays and the al-
location of robot control functions on control system
hardware requirements.

1 Introduction

As ambitious robotic applications are envisioned

and more complex robot designs attempted, the need

increases for efficient methods to evaluate their per-

formance. Many of these new applications will be im-

plemented on distributed computers. For instance, re-

motely operated and multiple-robot applications are

by their nature spatially distributed, and so necessi-

tate a distributed real-time system for robot coordi-

nation and control. The introduction of multiple pro-

cessors, communication delays, and probabilistic per-

formance of common-access communication channels

in distributed systems complicates prediction of their

real-time performance.

Performance analysis methods for conventional dis-

tributed systems employ one of three approaches: sim-

ulation, stochastic models, or semantic models [7].

These methods have complementary strengths and

weaknesses; so, several methods may be needed to an-

alyze all aspects of system performance. The char-

1Copyright ©1994 by the American Institute of Aero-
nautics and Astronautics, Inc. All rights reserved.

acteristics of these methods relevant to analyzing dis-

tributed real-time systems are summarized in Figure 1.

Simulation is arguably the most widely used ap-

proach. In a simulation model, the actual operation

of the system is duplicated in software at an abstract

level of detail. The fidelity of the simulation depends

upon accurately representing the structural properties

of the system such as precedence of operations and

contention for resources; and its timing properties such

as execution times, communication latencies, and sen-

sor polling delays. A simulation can produce a full

probability distribution of system response times; and

so, provide a complete characterization of soft- and

hard-real-time performance. Thorough characteriza-

tion comes at a price: a high level of detail is needed

for good accuracy, but is computationally expensive.

Also, complex systems have an extremely large num-

ber of states that may necessitate excessively lengthy

simulation duration to ensure that all states are exer-

cised. For this reason, simulations are poor for prov-

ing system correctness and global properties such as
boundedness and freedom from deadlock.

Stochastic models (e.g. Markov chains, queuing net-

works, Petri nets) are also commonly used for perfor-

mance analysis, particularly for evaluating communi-

cation networks. In this approach, the system is ideal-

ized as a finite set of discrete states with known prob-

ability distributions for the transition rates between

states. The model may be solved to estimate probabil-

ity of each state as a function of time from which av-

erage system performance may be derived. For simple

systems an efficient, analytical solution is often pos-

sible, and correctness and global properties may be

determined. However, stochastic models of complex

systems can be analytically intractable; requiring ap-

proximation methods which may compromise fidelity

and increase computation.
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Semanticmodeling is a less common approach to

assess system performance that arises from computa-

tional science theory of program correctness. In this

approach, the logical and temporal relationship be-

tween operations of the system are defined by process

algebras or assertional calculi. Correctness and time-

liness properties are then established by solving the

model via a theorem prover. Semantic models are ef-

fective for proving that timing specifications are satis-

fied, but do not necessarily provide quantitative mea-

sures of system performance. The downfall of semantic

models is their computational complexity; verification

is impractical for large systems.

None of the three approaches described above is

fully satisfactory for estimating performance of dis-

tributed systems having hard-real-time response re-

quirements. In a hard-real-time system, response times

must never exceed specifications; and so, the system

must be analyzed for worst-case performance. Simula-

tion can produce estimates of worst-case performance,

but at a high computational cost which becomes pro-

hibitive when the system is designed for multiple con-

current responses. Stochastic models give average re-

sponse times only, and thus do not provide the infor-

mation necessary to gauge performance of a hard-real-

time system. Semantic models excel at proving cor-

rectness and global properties, but are poor at quan-

tifying response times. A fourth approach, based on

scheduling theory, is proposed in this paper to specifi-

cally address distributed hard-real-time systems.

In the new performance analysis method, a for-

mal model describes distributed real-time system or-

ganization and its responses to external inputs. Sys-

tem software is modeled as independent tasks that

communicate by messages. Application of scheduling

theory enables the calculation of guaranteed response

times for task executions and message deliveries. The

model provides a framework for formulating a con-

straint satisfaction problem on processor and commu-

nication channel schedules and on real-time require-

ments whose solution defines system response times.

The performance analysis problem may be solved to

minimize weighted system response time or to mini-

mize hardware cost while meeting response time re-

quirements. The subsequent paper sections outline the

system model, show the formulation of the constraint

satisfaction problem, and then illustrate its use in an

example.

While this work has been motivated by the design

of robot coordination and control systems, the perfor-

mance analysis techniques are believed to have broader

application to many distributed real-time systems.
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Figure 1: Performance Analysis Method Comparison

2 Performance Analysis System Model

Distributed computer systems are composed from

multiple, independent processors connected by com-

munication links. The characteristics of distributed

systems can vary widely as the result of bandwidth

and propagation delay of the interprocessor connec-

tions. At the extremes are "tightly-coupled" multi-

processor computers in which processors share a high-

speed bus, and "loosely-coupled" multicompufer sys-

tems which comprise separate computers connected by

a network. Processor independence distinguishes dis-

tributed systems from parallel computers in which pro-

cessors typically are identical, and share data streams

and/or instruction decoding.

The proposed formal model can represent dis-

tributed systems with arbitrary communication net-

work topography; and so, can model the full range

from muitiprocessor to multicomputer system. In fact,

in the model, a single node of a multicomputer network

may be a complete multiprocessor. The new method is

particularly useful for loosely-coupled systems, where

access to communication channels as well as processor

usage must be scheduled, since few analysis techniques

are available for this class of distributed system.

Because the independent computers of a distributed

systems do not share physical memory, any data to

be exchanged between processors must be transmitted

across a communication link. The most common way
\

to design distributed software that accommodates this
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restrictionis to organizefunctionsasindependently-
executingtasksthat communicateviamessages.This
paradigmof tasksandmessagesisusedin theformal
modeltodefinethesystemsoftware,althoughthedef-
initionof a messagehasbeengeneralizedto include
less-structuredsignalssuchassensorinputsorcontrol
outputs.

Some tasks must execute on specific processors; for

instance, a sensor polling task must run on the proces-

sor that is interfaced to the sensor hardware. However,

in general, there are many choices of how to distribute

software on the hardware. The actual assignment of

tasks to processors has a strong influence on system

performance; and so, must be specified for performance

to be predicted. Optimal task assignment is an impor-

tant design problem for distributed systems. We are

currently experimenting with use of the new perfor-

mance analysis method to guide task assignment [4].

Robotic systems, and indeed most real-time sys-

tems, interact with their environment. Sensors gather

data to characterize the environment. The control sys-

tem monitors sensors to detect occurrence of specific

conditions or events to which the system is designed to

respond. And the system effects changes to the envi-

ronment through its actuators; thus forming a closed-

loop system. Also, in most systems, a human operator

may intervene to modify goals or to initiate actions.

Performance of robotic systems may be measured in

many ways: accuracy, reliability, cost, etc. As we are

primarily concerned with the computer system provid-

ing robot coordination and control, performance will

be defined as the end-to-end response time from when

a condition can be sensed until a control signal is sent

to actuators. Therefore, system response requirements

are identified by input-output events and a response

time specification. The requirement specifies a max-

imum response time since we are dealing with hard

real-time systems.

From this description we see that four components

are needed to fully describe a distributed real-time sys-

tem:

• software system model

• hardware system model

• assignment of tasks to processors

• system response requirements

In the definition of each model component, covered in

the following subsections, we have attempted to de-

scribe distributed real-time systems in terms that are
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Figure 2: Software Model of Teleoperation Example

as similar as possible to how they are actually con-

structed. While this tends to specialize the model, it

has the benefit of providing a more natural represen-

tation of a system implementation which, hopefully,

improves ease of use and accuracy.

2.1 Software System Model

A distributed robotic application is typically con-

structed from many, concurrent tasks that execute

on multiple processors, and communicate by message

passing between tasks, or between task and sensor or

actuator. Each task corresponds to a software mod-

ule, and the resulting system may be described by a

directed graph with nodes corresponding to tasks and

arcs representing messages. Each task is a separate

software module that may execute periodically or upon

demand ("aperiodic" or "event-driven"). This system

level graph defines the topography of the communica-
tions between tasks.

Figure 2 shows a system level view of a simpli-

fied control system for tile teleoperated robot example

that will be described in Section 4. The example em-

ploys a hierarchical architecture loosely modeled on the

NASA/NBS Standard Reference Model for Telerobot

Control System Architecture (NASREM) [1]. System

software is modeled with five periodic tasks and three

event-driven tasks, which are shown as boxes in the

figure. Periodic tasks are identified by their clock in-

puts (circles). Input (sensors, keyboards) and output

(actuators, displays) devices are represented by trian-

gles whose orientation denote direction of data flow.

Messages are shown as arrows from sending task to

receiving task. A total of fourteen messages are trans-

mitted between tasks in the example.
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At a more detailed module level, each task is viewed

as a finite state machine where task states or actions

are nodes, and transitions between actions are directed

arcs. The transition arcs are labeled with Real-Time

Logic predicates [3] which define the condition causing

the transition to occur. The purpose of the module

level view is to define the response of an individual

task to the input messages it receives. The finite state

machine representation of the task allows a different

computation time and different set of output messages

to be defined for each input message.

Each action node in the finite state machine repre-

sents a deterministic sequence of operations that are

delimited by a decision branch or a message transmis-

sion/arrival. When a node is entered it executes for a

fixed time interval and then optionally sends a message

prior to blocking in that state or transitioning to an-

other. Computation times are associated with actions,

while transitions are instantaneous. The optional mes-

sages produced by module actions correspond to the

messages output from modules at the system level.

Messages are identified only by type and bit length;

the data values contained in a message are not consid-
ered.

Figure 3 shows the finite state machines for two

tasks from the teleoperated robot example. The vi-

SION PROCESSING task periodically acquires a camera

image frame, transmits the frame as a VIDEO 1 message,

processes the image to locate objects in the robot's en-

vironment, and then outputs the positions of the ob-

jects in a oBJPOS message. Task processing is initiated

when a CLK signal is received; and, when complete, the

task returns to Idle Wait state to await the next signal.

Figure 3b shows the finite state machine for the aperi-

odic PLAN GENERATION task. This task is invoked by

the arrival of a message rather that a clock signal; and

contains two paths so that GOAL and ERROR messages

may be processed differently. Note that execution of

the task is interrupted at Action 4 while it waits for

requested data. Definition of periodic and aperiodic

tasks are essentially the same at the module level --

differing only by whether a clock signal or a message
activates the task.

2.2 Hardware System Model

The purpose of the hardware system model is to

describe how processors are interconnected, and the

capabilities of processors and communication chan-

nels. The principal capabilities of interest are processor
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Figure 3: Finite State Machines for Example Modules

speeds, and communications bandwidth and propaga-

tion delay.

Processor interconnections are represented by a

hardware graph in which graph nodes correspond to

processors, and graph arcs indicate the one-hop com-

munication links between processors. Dedicated, uni-

directional Communication channels are shown as di-

rected arcs; and shared communication channels (half-

duplex or broadcast media) as sets of non-directed

arcs. Any connection topography can be modeled in

this way including loosely-coupled multicomputer net-

works, bus-based multiprocessors, and combinations of

the two.

Figure 4a is a diagram of a multicomputer sys-

tem with four single-processor workstations and a 4-

processor multiprocessor connected by a local area net-

work. One sensor and one actuator are interfaced to

the multiprocessor. Figure 4b is the corresponding

hardware graph. Note how the shared multicomputer

LAN and the shared multiprocessor bus are expanded

into sets of bi-directional links that fully interconnect

all processors sharing each communication medium.

There are no dedicated links in this example.

2.3 Task Assignment

The distribution of software modules onto computer

hardware is described by first numbering all tasks and

processors, and then defining an assignment function

c_ which maps a task to a processor. Thus if task ti is

assigned to processor pj then c_(i) - j. This definition

allows us to reference the hardware properties of the

processor on which a task runs.

A similar assignment function can be defined to ref-
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erence the communication hardware used by a mes-

sage; thus if message mi is assigned to communication

link lj then c_(i) = j. Once tasks are assigned to pro-

cessors the communication link over which a message

travels is defined. Therefore the message assignment

function can be derived from the task assignment func-

tion plus the software and hardware system models;

and so, we only need to specify the task assignment

function.

2.4 Response Requirements

For this work, the principal performance measure

is response time. System response time is defined as
the time interval between occurrence of an external

event and the system response. When sensor polling

delays and actuator response times are factored out,

the response time can be expressed as the time between

an external input (sensor reading, operator command,

etc.) and an external output (control signal, display

update, etc.) of the control system.

System response requirements specify the events to

which the system must respond, the expected actions,

and response time. Requirements correspond to the

environmental constraints on the robotic system. We

will consider only hard-real-time requirements in which

a maximum response time is specified and must be

satisfied.

Most robotic systems will respond to many differ-

ent events; and so, multiple response requirements will

be defined. In hard-real-time applications, the sys-

tem is expected to process concurrent events within

their maximum response times under all load condi-

tions. It is this requirement for concurrent responses

that makes analysis of hard-real-time systems difficult.

Contention for processors and communication channels

will vary as the mix of concurrent events and their rela-

tive overlap varies. For instance, it is difficult to ensure

that sufficient, simulations have been performed such

that the worst-case combination of concurrent events

is modeled. And, average response times obtained from

stochastic models provide no information regarding re-

sponse degradation under load. A key advantage of

a scheduling theory-based approach is that its results

hold for all phasings of task invocations, i.e. degree of

overlap of concurrent, events.

3 Formulation of Performance Analysis

Constraint Satisfaction Problem

With the information contained in the system model

described above, a constraint satisfaction problem can

be formulated whose solution yields an estimate of sys-

tem response times. Performance of the distributed

robotic system is defined by a. set of constraint equa-

tions relating hardware, software, and response times.

These equations are presented in the following subsec-

tions.

This system of equations is underconstrained; and

so, a cost function is added to reduce the degrees of

freedom. Different solution objectives can be achieved

with different cost functions. In particular, the con-

straint equations may be solved to yield minimum sys-

tem response times for fixed hardware capacities, or to

find minimum-cost hardware which can meet all sys-

tem response time requirements.

The problem is summarized as:

• Minimize system response times o__rhardware cost

• Subject to:

1. Having a feasible schedule on every proces-

sor and communication channel

2. Meeting system response time requirements

3. Satisfying bounds on individual task and

message response times

3.1 Cost Functions

If no constraints are mutually exclusive then the

constraint satisfaction problem can be solved. How-

ever, since it is typically underconstrained, the prob-

lem can have an infinite number of solutions. A cost

fimction is included which introduces additional con-

straints to ensure that only one solution is produced.
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Throughourchoiceof costfunctionwecandirectthe
solutionto achievevariousdesignobjectives.

Systemresponsetime is onepossiblecostfunc-
tion. Sincethesystemmayhavemultipleresponses,
a weightedsumof responsetimesis usedto givea
single-valuedfunction. This allowsus to emphasize
onesystemresponseoveranother.A largepenaltyis
assignedforexceedingasystemresponserequirement,
soallrequirementsaremetbeforeresponsesarefurther
minimized.Whenthiscostfunctionisused,hardware
capacitiesareheldconstant;hence,this formisuseful
forevaluatingexistinghardware.

As analternative,hardwarecapacitiesmaybeal-
lowedtovary,andhardwarecostusedasthecostfunc-
tion.Theproblemsolutionyieldsvaluesforhardware
capacitiesaswellassystemresponsetimes.Thisform
oftheconstraintsatisfactionproblemisusefulforeval-
uatingproposedhardwaredesigns.Theexampleper-
formanceanalysisin Section4 is formulatedin this
manner.

3.2 Scheduling Constraints

A principal distinction between performance analy-

sis methods is how they handles resource contention.

Analysis methods for real-time systems must be able

to represent the order of internal system events so

that resource contention can be modeled. Usually this

means that the protocols for scheduling task execu-

tions and message deliveries must be known. Sim-

ulation methods use this information directly; while

stochastic models represent resource contention prob-

abilistically. The scheduling-based performance anal-

ysis method presented here requires that a priority-

based, preemptive scheduling protocol be employed for

both processors and communication channels. Real-

time operating systems typically implement such pro-

tocols for processors; however, communication proto-

cols supporting time-constrained messages are recent

developments [9][2], and are much less common.

The reason the scheduling-based method is re-

stricted to priority-based, preemptive protocols is that

it depends on their predictable properties. With this

class of scheduling protocol the execution time of the

highest priority task is always known, and the worst-

case execution times of lower priority tasks can be de-

termined by assuming all higher priority tasks must

execute first. In 1973, Liu and Layland [6] proved sev-

eral properties of priority-based, preemptive schedul-

ing protocols and introduced an analysis technique

known as the rate monotonic scheduling algorithm.

They established criteria for multiple tasks executing

periodically on a single processor that, when satisfied,

guarantee a schedule can be found in which all tasks

meet their execution deadlines. They also showed that

an optimal schedule is obtained by assigning priorities

based on task periods -- shortest period task has high-

est priority. The original work on scheduling unipro-

cessors has been extended to systems with aperiodic

tasks and to shared communication channels, and is

now referred to as generalized rate monotonic schedul-

ing [5] [8].

In the proposed performance analysis method,

scheduling theory criteria are used to identify the con-

ditions under which a set of tasks [messages] can be

scheduled such that they are guaranteed to meet ex-

ecution [delivery] deadlines. These deadlines are then

used as guaranteed response times. We have devel-

oped a modified form of the generalized rate mono-

tonic scheduling algorithm which applies to the robotic

system model with event-driven tasks and real-time

constraints. 2 This modified scheduling criterion gives

the minimum speed S" of a processor [or communica-

tion link] required to successfully schedule the tasks [or

messages] assigned to it:

= (± r l)-S_ (C, r, 0) max min Cn 7"
{I_<i<N,} {r6SP,} n=l

(*)
where t_, _, and 0 are vectors of computation times,

deadlines (guaranteed response times), and periods of

tasks [messages] assigned to processor Oink] j, respec-

tively. Nt is the number of assigned tasks [messages],

and SPi is the set of critical scheduling points as de-

fined by:

SPi = {(k-1)0j+,'j Ij=l ..... i;k=l ..... ,_,}
L #_ J

[3{k'rj l j=l ..... i,k--I ..... L_J}

Note that computation times 6', are normalized for a

"standard" processor defined to have a relative speed

of 1. Processor speed and S* are expressed as relative

speeds by ratioing to the standard processor. Messages
and communication channels are treated in the same

manner.

2Strictly speaking, since the technique uses deadlines
rnther than periods it should be referred to as deadfine-
monotonic scheduling. However, for clarity the more famil-
iar term will be used.
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Theschedulingconstraints require that the mini-

mum relative speed S* for a feasible schedule be less

than or equal to the relative speed S of the processor

or communication link:

S_ (C', P, _) _< Sj for every processor and link j (2)

The scheduling criterion defined by equation 1 es-

sentially forms a ratio between demand for execution

capacity (summation term) and available capacity (r).

The ratio is checked at critical scheduling points which

occur at deadlines and periods. Execution capacity de-

mand is calculated for all tasks of priority i and higher

priority tasks which may preempt it. The minimum ra-

tio over all scheduling points reflects the lowest speed

at which these tasks are schedulable for a given pri-

ority. Finally, the ratio is checked for all priorities,

and the worst case defines the relative speed needed to

successfully schedule the assigned tasks or messages.

3.3 System Response Time Constraints

As defined in Section 2.4, system response require-

ments are specified in terms of the external event which

invokes a response, the expected system action, and

response time. An external event detected by the sys-

tem's sensors will trigger a cascade of task executions

and message transmissions. Many tasks may execute

concurrently and multiple messages may contend for

shared communication channels. The precedence of

task executions and message transmissions associated

with a particular event can be derived from the soft-

ware model and is represented as a weighted directed

acyclic graph called an event response graph. Graph

arcs are weighted with task execution times and mes-

sage delivery times, which are dependent on the un-

derlying hardware capabilities. Since the graph is de-

terministic, a critical path through the graph can be

found that defines system response time for the specific

event.

As an example, consider the response of the sys-

tem from Figure 2 to a high-level command input by

an operator. The command is received by the INTER-

FACE MANAGER task which interprets the command

and then transmits a GOAL message to PLAN GENERA-

TION. In subsequent processing steps data is obtained

from the WORLD MODEL, a plan created and sent to

PLAN EXECUTION, and so on until the system response

to the high-level command is produced at the robot.

The complete sequence of task executions and message

transmissions is shown in the event response graph in

INTERFACE PLAN
REO

Hlgh-[.qWel [_ MANAGER GOAL GEN. __

CommKid
WORLD
MOOEL

PLAN PLAN
PATH EXEC PLAN GEN. OAT

TRAJ. __'_¢_ _ _ _'-_'_

GEN _ BASIC

Ton:lU_

Figure 5: An Event Response Graph

Figure 5. This simple example has a linear critical

path; but, in general, the critical path may contain

parallel legs. Control system response time is calcu-

lated by summing guaranteed task execution times of

the seven tasks in the graph including polling delays

at the periodic tasks, plus guaranteed message deliv-

ery times of the six messages including propagation

and switching delays, plus communication time associ-

ated with sensor input or actuator output. Note that

the PLAN GENERATION task appears twice in the ex-

ample event response graph. The first invocation of

PLAN GENERATION is in response to a GOAL message,

and the second in response to a DATA message. Execu-

tion times for PLAN GENERATION are different in each

instance as defined in the module level finite state ma-

chine description of the task (see Section 2.1).

The fact that event response graphs must be deter-

ministic does not prevent us from modeling probabilis-

tic events such as failures. In these cases, an event

response graph would be developed to represent the

processing that occurs for each possible outcome; and,

potentially, each outcome could have a separate hard-

real-time response requirement. If a system is required

to meet a response time specification even in the pres-

ence of failure then only the more restrictive situation

would have to be modeled -- probably the case in-

cluding the additional processing to accommodate fail-

ure. Alternatively, a less demanding response time re-

quirement could be defined for failure processing which

would yield a less costly control system design. This

type of analysis enables us to study tradeoffs between

system reliability and cost.

An event response graph is constructed for each sys-

tem response having a time requirement. Since guar-

anteed task execution times and guaranteed message

delivery times are solution variables of the problem,

system response time can be determined by summing

the variables corresponding to the weights on the event
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responsegraph.Theconstraintequationsareformed
by requiringthat systemresponsetimemustbeless
thanits requirementforeachresponse:

E ri ___R_ for all responses k (3)
t,,rrGECPk

where ri is the guaranteed response time of task or

message i, CPk is the set of tasks and messages on

the critical path for response k, and Rk is the system

response time requirement.

3.4 Task/Message Response Time Bounds

Response time for an individual task or message is

bounded. Response time can not be less than the time

required to execute the task or transmit the message,

and is not allowed to be greater than its period. This

upper bound results from a restriction that at most

one invocation of a task is allowed to execute at a time.

For aperiodic tasks, a parameter analogous to period

is specified to be the minimum interval between exe-

cutions. These bounds place the following constraints

on guaranteed response times:

G
< ri _< 0i for all tasks and messages (4)

S,_(0

where Sa(i) is the relative speed of the processor to

which ti or rn, is assigned (recall that a is the assign-

ment function), 0i is the period or minimum interar-

rival time of the task or message, and the other terms
retain their earlier definitions.

Task/message response time bounds can be repre-

sented as simple variable bounds for constraint satis-

faction problems with constant processor and commu-

nication channel speeds since all of the terms in the

calculation of the lower and upper bounds would be

known and constant. However, if hardware speeds are

solution variables, then the lower bounds must be in-

corporated as nonlinear constraint equations.

3.5 Solving Constraint Equations

In summary, to analyze the performance of a dis-

tributed robotic system we first define the system by

the model outlined in Section 2; then form the sys-

tem of constraints from equations 2, 3, and 4. The

constraint satisfaction problem is solved to minimize

the cost function, i.e. to minimize weighted system

response time, or to minimize hardware cost. The so-

lution provides times for all system responses, guaran-

teed response times for task executions and message

deliveries, and processor and communication channel

speeds.

A nonlinear programming method is needed to solve

the constraint equations. Unfortunately, although

equation 1 is continuous it is not smooth. Therefore,

nonlinear methods such as sequential quadratic pro-

gramming and others that require smooth derivative

information can not be used. The system of constraints

has been successfully solved with a successive linear

programming approach. We believe that this approach

works because the partial derivatives of equation 1 are

piecewise-linear. _ ::

4 Example Use of Analysis Method

This section presents an example use of the new

performance analysis method for design of the con-

trol computer system of a teleoperated robot. The
minimum-cost hardware formulation will be used to se-

lect capacities of processors and communication links

for various design conditions of communication delay

and task assignment.

Control software is organized in a "NASREM-Iike"

architecture as seen earlier in Figure 2. The stan-

dard components of sensory processing, world model-

ing, task decomposition, and operator interface are all

included; however, only the task decomposition func-

tions are modeled in sufficient detail to show a hier-

archical organization. The eight tasks comprising the

system are listed in Table i with their relative compu-

tation times and execution periods. Note that the task

decomposition functions of PLAN GENERATION, PLAN

EXECUTION, TRAJECTORY GENERATION, and BASIC

CONTROL form a hierarchy with execution period dif-

fering by an order of magnitude between levels. Param-

eters for the messages transmitted among the tasks are
listed in Table 2.

Task Comp Time, ms Period, ms

Basic Control

Traj. Generation

Plan Execution

Plan Generation

World Model

Vision Processing

Video Relay

Interface Manager

4

3O

5O

2OOO

5O

170

0.1

10

10

100

1000

lOO

100

I0

Table 1: Task Parameters for Example

Figure 6 shows the control system hardware for

the teleoperation example. It includes a local proces-

sor at ground station, a remote processor at an or-
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Message Length, kbits Period, ms
GOAL
PLAN
PATH
HCINP
SETPT
POS
OBJPOS
UPDATE
STATUS
ERROR
REQ
DATA
VIDEO1
VIDEO2

7.8
7.8
3.7
0.4
1.1
0.4
7.3
7.8
7.8
0.1
0.8
7.8
25
25

1ooo
lO

lOO
lO

lOO
lOO

lOOO

lOO
1oo

Table 2: Message Parameters for Example

bital facility, and control and vidpp processors on the

robot to support dedicated control and video prepro-

cessing functions. Three communication channels con-

nect these processors: unidirectional uplink and dnlink

channels between ground and orbit, and a radio net-

work, designated rnel, for communications between

robot processors and the orbital facility. The nomi-

nal assignment of tasks to processors locates VISION

PROCESSING on vidpp, BASIC CONTROL on control, IN-

TERFACE MANAGER on local, and all remaining tasks

on the remote processor.

R_

Figure 6: Hardware for Teleoperation Example

Five time-critical responses are specified, and serve

as the hard-real-time system response time require-

ments. They are listed on Table 3. The control system

must display information about the work site in three

forms: live video at 10 frames/second, a reconstruc-

tion of the world model updated by object recognition,

and a model showing robot position. The system must

guarantee that data from each of the three sources is

delivered to the INTERFACE MANAGER in 2.4 seconds

(2400 ms) so that it can be fused into a consistent dis-

play. An operator controls the robot either indirectly

through high-level commands, or directly via a hand

controller. The system is expected to respond to high-

level commands in 9600 ms, and hand controller input

in 1200 ms. As covered in section 3.3, an event re-

sponse graph is constructed for each system response

requirement to identify tile tasks and messages invoked

to process each response.

Description Mnemonic Requirement
Display Live Video LIVE_DSP 2400 ms
Display World Model WM_DSP 2400 ms
Display Robot Position ROB_DSP 2400 ms
Respond to HL Command CMD_RSP 9600 ms
Respond to Hand Controller HC_RSP 1200 ms

Table 3: System Response Requirements for Example

Relative costs for processors and communication

channels were modeled with a power function: cost =

multiplier x speed erp°"_nt. Ground facilities were as-

signed a 1.0 multiplier, orbital facilities were assumed

to have an order of magnitude higher multiplier, and

processors on the robot have an additional factor of

two premium. Exponents of 2.0 for ground and 1.5
for orbital facilities were used. The cost model should

have an additional additive factor; but the SLP solu-

tion method being used cannot support it.

4.1 Effect of Communication Delays

In the first design study, the effect of communica-

tion delay on processor and communication channel

capacity is examined. The new performance analysis
method is used to find the minimum hardware needed

to guarantee that system response time requirements

are achieved. Communication delays of 100, 500, and

1000 ms are studied. These values represent propa-

gation and switching delays only; and so, may appear

low compared to customarily quoted values which in-

clude scheduling delays due to traffic contention. The

performance analysis method computes the scheduling

delays.

Table 4 summarizes key results. As required, all

system responses meet requirements. At 100 and 500

ms delays the high-level command response is limiting;

whereas, the world model display response limits at

1000 ms delay.

Most non-limiting responses differ between cases by

an amount equal to the difference in communication

delay. This is a consequence of the solution method

which focuses on the requirements that constrain hard-

ware speed while essentially ignoring responses not at

a limit. Requirements for non-limiting responses could

be lowered to the reported values without affecting

hardware speeds.

Faster processors and communication channels are

needed as communication delay increases. At delays of
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500msandlower,themoreexpensivecontroland Vidpp

processors are at minimum capacity needed to meet

execution periods of their assigned tasks. A modest

increase in remote processor speed is sufficient to ac-

commodate a communication delay of 500 vs. 100 ms.

However, for the 1000 ms delay, all processor speeds

must be higher in order to meet system response re-

quirements.
Total relative hardware cost differs little between

100 and 500 ms cases. However, the cost of the video

preprocessor dominates total cost, thereby masking the
10% difference in cost of all other components between

the cases. The design for 1000 ms delay is significantly

more costly: 246% total and 137% system excluding

vidpp costs relative to the 500 ms design.

The point of this analysis is not to draw conclu-

sions regarding an admittedly over-simplified teleop-

erated robot application, but rather to demonstrate a

possible use for the new performance analysis method.

It is feasible to guide key design decisions, in this case

by examining tradeoffs between control _ystern costs

and communication switching infrastructure, through

use of real-time system analysis.

C.e# ] 11 LI 3
Comm Delays, ms I ]_ 5-------00I 1000

System Responses, ms

- LIVE_DSP 360 760 1210

- WM_DSP 1760 2060 2400

- ROB_DSP 1580 1880 2270

- CMD_RSP 9600 9600 9380

- HC_RSP 280 670 1160

Processor Capacity

-7 control 0.40 0.40 0.65

- vidpp 1.70 1.70 3.55

- remote 1.22 1.36 1.52

- local 1.00 1.00 1.12

Comm Link Capacity

- uplink 0.99 0.98 1.03

- drdink 0.99 0.98 0.99

- met 0.10 0.11 0.11

Relative Cost

- system ex vidpp 0.90 1.00 1.37

- vidpp 1.00 1.00 3.02

- total system 0.97 1.00 2.46

Table 4: Effect of Communication Delays

4.2 Effect of Task Assignment

Another use of the new performance analysis

method is illustrated in this section as a design study

evaluating the effect of task assignment on hardware

cost. Communication delays are fixed at 500 ms for

allcases.In the base case,PLAN GENERATION, PLAN

EXECUTION, and TRAJECTORY GENERATION tasksexe-

cute on the remote processor,and the BASIC CONTROL

task on the controlprocessor.

The effectof moving firstPLAN GENERATION and

then PLAN EXECUTION tothe localprocessorwas mod-

eled with the resultsshown in Table 5. Cost savings

can be obtained by shiftingcomputing load from ex-

pensiveorbitalprocessorsto lower cost ground com-

puterswhile stillmeeting response time requirements.

For thissimplifiedexample, the analysissuggeststhat

the savings may be substantial,and may motivate

furtherstudy to assessthe impact on other mission-

criticalfactorssuch as the reliabilityand safetyimpli-

cationsof remote computing.

Migrating dedicated processingat the robot to the

somewhat lessexpensive computing availableat Spacc

Station may also be cost effective.Table 6 summa-

rizesmodeling resultsfor moving the CONTROL task

to the remote processor.This reassignment eliminates

the controlprocessorwhich isreplacedby simplerhard-

ware to receivecontrolsignalsfrom met; and remote

processorcapacityiscorrespondinglyincreased.Com-

munication latencyof the controlsignalsare on the

order of 0.3-0.4ms which should be acceptable.The

fullbenefitof relocatingcontrolfunctionsmay not be

achievablesincesome at-robotprocessingcapabilityis

requiredforsafetyfunctionswhich have not been mod-

eled.

5 Future Work

Currently we are working to improving the efficiency

of the performance analysis method; in particular, to

increase robustness of the successive LP solution ap-

proach and to decrease computation time. The prin-

cipal motivation for improving solution efficiency is so

that the performance analysis method may be embed-

ded in a genetic algorithm with the objective of find-

ing near-optimal task assignments. If successful, this

would provide a powerful tool for designing distributed

real-time systems in which software module allocations

and hardware are optimized concurrently.

Other activities are aimed at demonstrating the ca-

pabilities of the performance analysis method on a va-

riety of robotic systems, and directly comparing re-

sults to those obtained from simulation and stochastic

models. Theoretical and experimental verification of

performance analysis tools will provide an important

contribution to the field of robotics, and will form the
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Case # IComm Delays, ms

Task Assignments
- Plan Gen.
- Plan Exec.

- Traj. Gen
- Control

System Responses, ms
- LIVE_DSP

- WM_DSP

-ROB_DSP

- CMD_RSP

- HC_RSP

Processor Capacity
- control

- vldpp
- remote

- locM

Comm Link Capacity

- upllnk

- dnllnk

- met

Relative Cost

- system ex vidpp I

Table 5: Effect of Shifting

21 41 s500 500 500

remote local local

remote remote local

remote remote remote
control control control

760 820 90O
2060 2400 1970

1880 2220 1790

9600 9600 9600
670 670 680

0.40 0.40 0.40
1.70 1.70 1.70

1.36 0.92 0.81

1.00 1.32 1.35

/

0.98 0.92 0.63 /
0.98 0.90 0.21

0.11 0.11 0.08

1.00 I 0.72] 0.62

Tasks to Local Proc

basis for more efficient development of new robotics

applications in the future.
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